Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.

Identifieur interne : 000095 ( Main/Exploration ); précédent : 000094; suivant : 000096

Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.

Auteurs : Shixi Zhang [République populaire de Chine] ; Junhu Dai [République populaire de Chine] ; Quansheng Ge [République populaire de Chine]

Source :

RBID : pubmed:32494031

Abstract

Current understanding of autumn phenological responses to climate change in deciduous tree species remains limited, mainly due to the difficulties in defining autumn events and the lack of knowledge about its mechanism. Here we applied a method based on measuring chlorophyll A (Chla) content in leaf tissue during the entire autumn senescence processes to appropriately quantify autumn phenological processes. Beginning of leaf coloring could be defined as when about 50% of the Chl was lost. End of leaf coloring could be defined as when about 95% of the Chl was lost. Then the mechanism behind the timing of autumn senescence responses to climate change through hormone regulation was studied for the first time. Four dominate deciduous tree species with representative senescence type (Salix babylonica, Ginkgo biloba, Acer mono, Cotinus coggygria) were chosen as the subject of study. Variations in climate factors (temperature, day length, precipitation, humidity) were recorded and nine major endogenous hormones (IAA, IPA, ZR, DHZR, GA3, GA4, ABA, MeJA, BR) in leaf tissues were monitored during the entire autumn senescence processes. The experimental results verified temperature and day length are the major climate factors affecting autumn phenology. Low temperature and short day length could result in the decrease of ZR level and the increase of ABA level in leaf tissue, which directly trigger/promote senescence. Meanwhile, low temperature and short day length could cause the decrease of MeJA level and the increase of GA3 and GA4 level, which regulate the timing of autumn senescence indirectly through ZR, ABA, and IAA. Our study improves the understanding of autumn phenological response to climate change in deciduous trees.

DOI: 10.1038/s41598-020-65704-8
PubMed: 32494031
PubMed Central: PMC7270090


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.</title>
<author>
<name sortKey="Zhang, Shixi" sort="Zhang, Shixi" uniqKey="Zhang S" first="Shixi" last="Zhang">Shixi Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dai, Junhu" sort="Dai, Junhu" uniqKey="Dai J" first="Junhu" last="Dai">Junhu Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ge, Quansheng" sort="Ge, Quansheng" uniqKey="Ge Q" first="Quansheng" last="Ge">Quansheng Ge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China. geqs@igsnrr.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32494031</idno>
<idno type="pmid">32494031</idno>
<idno type="doi">10.1038/s41598-020-65704-8</idno>
<idno type="pmc">PMC7270090</idno>
<idno type="wicri:Area/Main/Corpus">000156</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000156</idno>
<idno type="wicri:Area/Main/Curation">000156</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000156</idno>
<idno type="wicri:Area/Main/Exploration">000156</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.</title>
<author>
<name sortKey="Zhang, Shixi" sort="Zhang, Shixi" uniqKey="Zhang S" first="Shixi" last="Zhang">Shixi Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dai, Junhu" sort="Dai, Junhu" uniqKey="Dai J" first="Junhu" last="Dai">Junhu Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ge, Quansheng" sort="Ge, Quansheng" uniqKey="Ge Q" first="Quansheng" last="Ge">Quansheng Ge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China. geqs@igsnrr.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101</wicri:regionArea>
<wicri:noRegion>100101</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Current understanding of autumn phenological responses to climate change in deciduous tree species remains limited, mainly due to the difficulties in defining autumn events and the lack of knowledge about its mechanism. Here we applied a method based on measuring chlorophyll A (Chla) content in leaf tissue during the entire autumn senescence processes to appropriately quantify autumn phenological processes. Beginning of leaf coloring could be defined as when about 50% of the Chl was lost. End of leaf coloring could be defined as when about 95% of the Chl was lost. Then the mechanism behind the timing of autumn senescence responses to climate change through hormone regulation was studied for the first time. Four dominate deciduous tree species with representative senescence type (Salix babylonica, Ginkgo biloba, Acer mono, Cotinus coggygria) were chosen as the subject of study. Variations in climate factors (temperature, day length, precipitation, humidity) were recorded and nine major endogenous hormones (IAA, IPA, ZR, DHZR, GA
<sub>3</sub>
, GA
<sub>4</sub>
, ABA, MeJA, BR) in leaf tissues were monitored during the entire autumn senescence processes. The experimental results verified temperature and day length are the major climate factors affecting autumn phenology. Low temperature and short day length could result in the decrease of ZR level and the increase of ABA level in leaf tissue, which directly trigger/promote senescence. Meanwhile, low temperature and short day length could cause the decrease of MeJA level and the increase of GA
<sub>3</sub>
and GA
<sub>4</sub>
level, which regulate the timing of autumn senescence indirectly through ZR, ABA, and IAA. Our study improves the understanding of autumn phenological response to climate change in deciduous trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32494031</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>9039</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-65704-8</ELocationID>
<Abstract>
<AbstractText>Current understanding of autumn phenological responses to climate change in deciduous tree species remains limited, mainly due to the difficulties in defining autumn events and the lack of knowledge about its mechanism. Here we applied a method based on measuring chlorophyll A (Chla) content in leaf tissue during the entire autumn senescence processes to appropriately quantify autumn phenological processes. Beginning of leaf coloring could be defined as when about 50% of the Chl was lost. End of leaf coloring could be defined as when about 95% of the Chl was lost. Then the mechanism behind the timing of autumn senescence responses to climate change through hormone regulation was studied for the first time. Four dominate deciduous tree species with representative senescence type (Salix babylonica, Ginkgo biloba, Acer mono, Cotinus coggygria) were chosen as the subject of study. Variations in climate factors (temperature, day length, precipitation, humidity) were recorded and nine major endogenous hormones (IAA, IPA, ZR, DHZR, GA
<sub>3</sub>
, GA
<sub>4</sub>
, ABA, MeJA, BR) in leaf tissues were monitored during the entire autumn senescence processes. The experimental results verified temperature and day length are the major climate factors affecting autumn phenology. Low temperature and short day length could result in the decrease of ZR level and the increase of ABA level in leaf tissue, which directly trigger/promote senescence. Meanwhile, low temperature and short day length could cause the decrease of MeJA level and the increase of GA
<sub>3</sub>
and GA
<sub>4</sub>
level, which regulate the timing of autumn senescence indirectly through ZR, ABA, and IAA. Our study improves the understanding of autumn phenological response to climate change in deciduous trees.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shixi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Junhu</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ge</LastName>
<ForeName>Quansheng</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China. geqs@igsnrr.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32494031</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-65704-8</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-65704-8</ArticleId>
<ArticleId IdType="pmc">PMC7270090</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):547-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22702736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):1085-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23584548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 May;40(2):267-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10412905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jun;37(3):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9617813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jan;35(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21923759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Mar 20;136(6):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Jul;21(7):2634-2641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25662890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Sep;127(1):315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1980 Aug;66(2):246-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2006 Jun 30;571(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17723423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Dec;161(12):1347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15658805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2019 Mar;256(2):313-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30311054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Feb;11(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18409210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Apr 14;16:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27079791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Mar;30(3):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25662784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Shixi" sort="Zhang, Shixi" uniqKey="Zhang S" first="Shixi" last="Zhang">Shixi Zhang</name>
</noRegion>
<name sortKey="Dai, Junhu" sort="Dai, Junhu" uniqKey="Dai J" first="Junhu" last="Dai">Junhu Dai</name>
<name sortKey="Ge, Quansheng" sort="Ge, Quansheng" uniqKey="Ge Q" first="Quansheng" last="Ge">Quansheng Ge</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000095 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000095 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32494031
   |texte=   Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32494031" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020